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affected baseline P-value distributions in randomized trials
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Abstract
Objectives: To investigate whether comparing observed with expected P-value distributions for baseline continuous variables in ran-
domized controlled trials (RCTs) might be limited by randomization methods, normality and correlation of variables, or calculation of P-
values from rounded summary statistics.

Study Design and Setting: We assessed how each factor affects differences from expected for P-value distributions and area under the
curve of the cumulative distribution function (AUC-CDF) of baseline P-values in 13 RCTs and in simulations.

Results: The P-value distributions and AUC-CDF for variables with possible non-normal distribution and in simulations using eight
different randomization methods were consistent with the theoretical uniform distribution and AUC-CDF, respectively, although stratifica-
tion and minimization produced smaller-than-expected proportions of P-values !0.10. Seventy-seven percentage of 3,813 pairwise corre-
lations between baseline variables in the 13 individual RCTs were between �0.2 and 0.2. P-value distribution and AUC-CDF remained
consistent with the uniform distribution in simulations with incrementally increasing correlation strength. The P-value distributions calcu-
lated from rounded summary statistics were not uniform, but expected distributions could be empirically generated.

Conclusions: Randomization methods, non-normality, and strength of correlation of baseline variables did not have important effects
on baseline P-value distribution or AUC-CDF, but baseline P-values calculated from rounded summary statistics are non-uniformly distrib-
uted. � 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The distribution of baseline variables in groups of RCTs
has been used in assessment of research integrity and po-
tential research misconduct, when there have been prior
concerns about the research [1e4]. Previously, we assessed
the distribution of P-values from comparisons between
baseline variables in a group of RCTs about which concerns
had been raised [3]. To date, at least some of these RCTs
were determined to be fraudulent [5]. In theory, because
participants in an RCT are randomly allocated to study
groups, the expected distribution of P-values from compar-
isons between randomized groups for independent baseline
continuous variables (baseline P-values) is uniform. In an
accompanying paper, we assessed the distribution of base-
line P-values in a data set of individual patient data from 13
placebo-controlled RCTs carried out by our research group
over the past 20 years [6]. In this data set, the average dis-
tribution of baseline P-values from comparisons of contin-
uous variables was uniform, with only small differences
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What is new?

Key findings
� Non-normal distribution of baseline continuous

variables, eight common randomization methods,
and correlation of baseline variables did not have
important effects on baseline P-value distribution.

� However, the distribution of P-values calculated
from rounded summary statistics is not uniform,
although the expected distribution can be empiri-
cally generated.

What this adds to what was known?
� Concerns that correlation and non-normality of

baseline variables or randomization methods
would impact on baseline P-value distribution in
genuine randomized controlled trials (RCTs) do
not appear to be justified.

What is the implication and what should change
now?
� Distribution of baseline P-values calculated from

rounded summary statistics should be compared
to empirically generated distributions not the uni-
form distribution.

M.J. Bolland et al. / Journal of Cl
from the expected distributions. However, it has been sug-
gested that baseline P-values may not be uniform when
techniques other than simple randomization are used [7].
In addition, concerns have been raised that non-normal or
fixed and/or highly correlated baseline variables may lead
to non-uniformly distributed baseline P-values [7e9]. Here,
we extend our previous analyses by exploring the impact of
different randomization methods, non-normal distribution
of variables and increasingly strong correlation between
variables on the distribution of baseline P-values, and the
area under the curve (AUC) of the cumulative distribution
function (CDF) of these P-values from continuous variables
in the data set of our trials and in simulations.

Many groups and journals recommend against reporting
of P-values from between-group comparisons of baseline
variables in articles, even though it remains a common prac-
tice [10]. When baseline P-values are not reported, they can
be calculated from the reported summary statistics (mean,
standard deviation, n) using parametric tests. As these sum-
mary statistics are invariably rounded, the calculated P-
values are likely to differ from those calculated from raw
data.We also explored what effect rounding has on the distri-
bution of baseline P-values and the area under the curve of
the cumulative distribution function (AUC-CDF).
2. Methods

2.1. Data sets of RCTs

We pooled anonymized individual patient data from 13
single-centre, placebo-controlled RCTs [11e23] carried
out by our group, as previously described [6]. Table 1 shows
selected features of the 13RCTs. All trials were carried out in
older people and studied osteoporosis treatment and preven-
tion. Four were carried out in specific conditions (HIV,
sarcoidosis, diabetes, and osteoporosis), three in healthy
women with osteopenia, and the other six in healthy individ-
uals. Randomization was by a minimization algorithm for 1
RCT, using stratification for 1 RCT, and using variable block
sizes for 11 RCTs. For these analyses, the pooled data set was
restricted to 30 commonly presented baseline continuous
variables (Table 2) to represent the typical ‘‘real world’’ pre-
sentation of baseline data. The number of baseline variables
in each trial ranged from 18 to 28, and the entire data set con-
tained 319 variables from the 13 RCTs.

2.2. Calculation of baseline P-values

We compared the means of the baseline variables be-
tween randomized groups with a t-test or one-way ANOVA
using individual, raw, unrounded data for each RCT in the
primary analyses. We repeated these comparisons using
nonparametric Wilcoxon or Kruskal-Wallis tests. The dis-
tribution of baseline P-values by decile was compared to
the expected uniform distribution using a one-way chi-
square test. We also calculated the AUC of the CDF of
the baseline P-values and compared the AUC to that of
the uniform distribution (0.50) [6]. To estimate the likely
random variation in P-value distribution, we undertook
100 simulations in which each trial was rerandomized using
the original randomization method (Table 1) and compared
the baseline variables with a t-test or one-way ANOVA for
each rerandomization.

2.3. Effects of randomization methods

We generated a data set with 100 simulated randomiza-
tions of the 13 RCTs using eight different randomization
methods. Separate randomizations were carried out for each
simulation and each RCT. First, a uniformly distributed
random number was generated in each simulation for each
participant in each RCT. Then the different methods of
randomization were used to form simulated treatment
groups. (1) Simple randomization: groups were formed
based on appropriate thresholds (0.5 for two-arm studies;
0.333 and 0.667 for three-arm studies; and 0.25, 0.5, and
0.75 for four arm studies). (2) Randomization in one block
per group: groups were formed based on the median, tertile,
or quartile of random numbers. (3) Fixed block size: block
sizes of 4 for two-arm and four-arm studies and 3 for three-
arm studieswere used. (4)Variable block size: block sizes be-
tween 4 and 20 or 3 and 18were used. (5) Stratified one block:
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Table 1. Design and baseline characteristics and variables in 13 randomized controlled trials in the individual patient data set

Study N
Mean
age (y) Population Design Agent

Baseline
variables (N ) Randomization method

Reid 1993 [11] 135 58 Older women 2-arm Calcium 22 Variable blocks

Reid 2000 [12] 185 63 Older women 2-arm Hydrochlorothiazide 26 Stratification (2 variables)
block size 4

Reid 2005 [13] 41 63 Older women 2-arm Propranolol 18 Variable blocks

Reid 2006 [14] 1,471 74 Older women 2-arm Calcium 19 Minimization (3 variables)

Bolland 2007 [15] 43 49 HIV-infected men 2-arm Zoledronate 27 Variable blocks

Grey 2007 [16] 50 67 Older women 2-arm Rosiglitazone 28 Variable blocks

Reid 2007 [17] 80 65 Women, osteoporosis 2-arm Fluoride 26 Variable blocks

Reid 2008 [18] 323 56 Older men 3-arm Calcium 25 Variable blocks

Grey 2009 [19] 50 64 Women, osteopenia 2-arm Zoledronate 26 Variable blocks

Grey 2012 [20] 180 65 Women, osteopenia 4-arm Zoledronate 25 Variable blocks

Bolland 2013 [21] 27 57 Sarcoidosis 2-arm Vitamin D 28 Variable blocks

Grey 2013 [22] 180 69 Women, osteopenia 4-arm Fluoride 25 Variable blocks

Grey 2014 [23] 86 64 Diabetes 2-arm Pioglitazone 24 Variable blocks
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participants were stratified into 8 groups by the median value
for age, weight, and lumbar spine bone density, and then
groups were formed based on the median, tertile, or quartile
of random numbers for each stratum. (6) Stratified fixed
block: block sizes of 4 for two-arm and four-arm studies
and 3 for three-arm studies were used for each stratum. (7)
Minimization: treatments were assigned using a minimiza-
tion algorithm that aimed to balance treatment groups for
age, weight, and lumbar spine bone density (using median
value for each study as threshold). (8) Weighted minimiza-
tion: there was an 80% chance of treatment being assigned
using minimization and a 20% chance of treatment being as-
signed using simple randomization. The P-values for age,
weight, and lumbar spine bone density were not included in
analyses of the distribution of baseline P-values for the strat-
ified or minimization analyses.

2.4. Effect of normality of distribution

We assessed whether the baseline continuous variables
in the pooled original data set were normally distributed us-
ing the Shapiro-Wilk test and identified any variables with
P ! 0.05 and P ! 0.001, respectively, which suggested a
non-normal distribution. We then restricted the analyses of
baseline P-values by decile to these variables with possible
non-normal distribution.

We generated a data set of 100 simulations of normally
distributed baseline variables (the ‘‘simulated normal data
set’’) in which each simulated observation for an individual
was generated using a normally distributed random number
based on the mean and standard deviation for each variable
from each of the 13 RCTs, and individuals were random-
ized in a single block per treatment group to ensure group
numbers were similar. Analyses were repeated in this data
set, in which there were few variables that were highly non-
normally distributed.
2.5. Effect of correlation of baseline variables

Spearman correlations were calculated for baseline vari-
ables in the RCTs and Pearson correlations for the simu-
lated normal data set.

To assess the effect of increasing strength of correlation
of variables on the distribution of baseline P-values, we
generated a data set of 100 simulations of five normally
distributed variables (age, height, weight, lumbar spine
bone density, and serum creatinine) based on the mean,
standard deviation, and covariance matrix of the variable
in each of the 13 RCTs using the IML procedure in SAS.
We then increased each pairwise correlation between vari-
ables away from 0 by 0.1, converted the correlation matrix
to a covariance matrix, and repeated the simulation. If cor-
relation matrices were invalid, the nearest valid correlation
matrix was estimated and used [24,25]. We repeated these
analyses using all baseline variables from each study.

We also assessed the impact of clustering of correlated
variables on baseline P-values. By chance, there may be a
large difference in a variable between randomized groups.
If this variable is highly correlated with other variables, it
might be expected that those variables may also differ be-
tween groups. The converse argument would apply for
closely matched variables. We therefore restricted our ana-
lyses to simulations with P! 0.10 or PO 0.90 for age from
the comparison of randomized groups in the simulated data
sets with increasing correlation between five variables based
on the correlationmatrices of the RCTs.We then assessed the
distribution of baseline P-values for the other four variables.
2.6. P-values calculated from rounded summary
statistics

To assess the effect of rounding of summary statistics on
the distribution of P-values, we calculated the mean and
www.manaraa.com



Table 2. Thirty variables commonly presented in baseline trial data

Category Variable Mean (SD) Common rounding Extreme rounding

Clinical characteristics Age (y) 68.3 (9.6) 0.1 (0.1) 1 (1)

Age at menopause (y) 49 (5) 1 (1) 1 (1)

Height (cm) 162.3 (8.3) 0.1 (0.1) 1 (1)

Weight (kg) 69.5 (13) 0.1 (0.1) 1 (1)

Full blood count Hemoglobin (g/L) 136 (10) 1 (1) 1 (1)

White blood cell count (cells/L) 5.7 (1.6) 0.1 (0.1) 1 (1)

Basic biochemistry Albumin (g/L) 43 (2.6) 1 (0.1) 1 (1)

Creatinine (umol/L) 84 (15) 1 (1) 1 (1)

Glucose (mmol/L) 5.1 (0.7) 0.1 (0.1) 0.1 (0.1)

Potassium (mmol/L) 4.4 (0.4) 0.1 (0.1) 0.1 (0.1)

Sodium (mmol/L) 141 (2.2) 1 (0.1) 1 (1)

Liver function Alkaline phosphatase (U/L) 80 (22) 1 (1) 1 (1)

Aspartate transaminase (U/L) 23 (6.4) 1 (0.1) 1 (1)

Bilirubin (umol/L) 12 (6.1) 1 (0.1) 1 (1)

Gamma-glutamyl transferase (U/L) 23 (18) 1 (1) 1 (1)

Serum calcium and bone parameters Calcium (mmol/L) 2.33 (0.09) 0.01 (0.01) 0.01 (0.01)

Phosphate (mmol/L) 1.15 (0.15) 0.01 (0.01) 0.1 (0.1)

25-hydroxyvitamin D (nmol/L) 63 (26) 1 (1) 1 (1)

1,25 dihydroxyvitamin D (pmol/L) 105 (32) 1 (1) 1 (1)

b-C-terminal telopeptide of
type I collagen (ug/L)

0.41 (0.20) 0.01 (0.01) 0.01 (0.01)

Procollagen type-I N-terminal
propeptide (ug/L)

48 (20) 1 (1) 1 (1)

Parathyroid hormone (pmol/L) 3.6 (1.5) 0.1 (0.1) 0.1 (0.1)

Urine calcium (mmol/L) 2.27 (1.91) 0.01 (0.01) 0.1 (0.1)

Dietary calcium intake (mg/d) 879 (430) 1 (1) 1 (1)

Dual energy X-ray absorptiometry Lumbar spine (g/cm2) 1.09 (0.19) 0.01 (0.01) 0.01 (0.01)

Total hip (g/cm2) 0.91 (0.15) 0.01 (0.01) 0.01 (0.01)

Femoral neck (g/cm2) 0.86 (0.14) 0.01 (0.01) 0.01 (0.01)

Total body (g/cm2) 1.08 (0.12) 0.01 (0.01) 0.01 (0.01)

Lean mass (kg) 39.6 (9.3) 0.1 (0.1) 1 (1)

Fat mass (kg) 25.7 (9.5) 0.1 (0.1) 1 (1)

The mean and standard deviation (SD) are the summary data from all 13 randomized controlled trials. The rounding columns show two different
levels used to round summary statistics from which baseline P-values were calculated.
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standard deviation for each variable for each of the 13
RCTs, rounded these summary data, and calculated the P-
values from them using a t-test or one way ANOVA. We
used two levels of rounding: firstly, typical rounding that
might be presented in a article, and secondly an extreme
level of rounding (Table 2). We performed these analyses
in the data set of RCTs with 100 simulated randomizations
(with individuals randomized in one block per treatment
group to ensure group numbers were similar) and in the
simulated normal data set.

When rounded summary means are identical, the P-
value calculated from summary statistics is 1. To determine
whether simulating P-values might overcome this issue, we
performed 1,000 simulations for each variable in the data
set of 100 simulated randomizations (with individuals
randomized in one block per treatment group) and in the
simulated normal data set. One thousand simulated means
and standard deviations for each rounded mean and stan-
dard deviation for each variable in each treatment group
for each of the 13 RCTs were calculated using uniformly
distributed random numbers that lay within the minimum
and maximum rounding of the variable. For example, for
a mean of 30, 1,000 values uniformly distributed between
29.5 and 30.5 were generated. Likewise, for a standard de-
viation of 0.15, 1,000 values between 0.145 and 0.155 were
generated. The P-value for the difference between groups
for each simulation was then calculated from the unrounded
simulated means and standard deviations, and the mean of
the 1,000 P-values from the simulations used in place of the
P-value calculated from the summary statistics.
www.manaraa.com
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2.7. Analyses

All analyses were performed with SAS (SAS Institute,
Cary, NC, USA version 9.4). The distributions of P-values
grouped by decile were compared to the expected uniform
distribution using a one-way chi-square test. The AUC for
the CDF of P-values was calculated using the trapezoidal
method. Ninety-five percent confidence intervals (CI) for
the AUC for the 319 baseline P-values were calculated
from a data set of 100 rerandomizations using the original
trial randomization method [6]; for other analyses, they
were calculated from the 2.5 to 97.5 centiles of the AUCs
of the CDF from analyses involving multiple simulations,
or from bootstrap resampling (n 5 500, sampling with
replacement) for analyses without multiple simulations.
Fig. 1. Distribution of 319 P-values for 30 baseline variables in 13
randomized controlled trials. Panel A shows the distribution of P-
values by decile for all 319 variables, and Panel B the distribution
of P-values by decile with 95% confidence intervals from 100 reran-
domizations of the original trial data (n5 319 variables, 100 random-
izations, thus 31,900 P-values). The dotted line is the expected
uniform proportion of 0.10 in Panels A and B. Panel C shows the cu-
mulative distribution function (CDF) of the baseline 319 P-values
(solid line) with the CDF of the expected uniform distribution (dotted
line). D AUC (uniform) is the difference in area under the curve (AUC)
of the CDF from the AUC of the uniform distribution CDF, with the
confidence intervals (CI) determined from the AUCs of the CDFs from
the data set of 100 original trial rerandomizations.
3. Results

3.1. Effect of randomization method

The distribution of P-values from the comparison of the
319 baseline variables between the randomized groups in
the 13 placebo-controlled RCTs was approximately consis-
tent with a uniform distribution (P 5 0.39, difference in
AUC from the uniform distribution AUC �0.03, [95% CI
�0.04, 0.04], Fig. 1), although some proportions for indi-
vidual deciles differed from the expected proportions.
Fig. 1 also shows that in the data set of 100 rerandomiza-
tions using the original randomization method (Table 1)
the distribution of P-values was approximately uniform.

Fig. 2 shows the results of 100 simulated randomizations
using eight different methods. For simple randomization
and randomization in blocks, the distribution of baseline
P-values was approximately uniform (Figs. 2AeD). When
stratification or minimization was used (Figs. 2EeH), visu-
ally there appeared to be a smaller-than-expected propor-
tion of P-values in the lowest decile, consistent with the
pattern seen in Fig. 1, although in all cases the calculated
95% confidence interval (0.05e0.12 stratified fixed blocks;
0.06e0.13 stratified one block; 0.05e0.11 minimization;
0.05e0.12 weighted minimization) included the expected
value of 0.10. Fig. 2 and Appendix Fig. A1 show that the
AUC-CDF was consistent with the uniform AUC for all
randomization methods.

3.2. Effect of normality of distribution

Of the 319 baseline variables in 13 placebo-controlled
RCTs, 212 (66%) had P ! 0.05 and 135 (42%) had
P ! 0.001 from the Shapiro-Wilk test, indicating possible
non-normal distribution. When the baseline variables were
compared using nonparametric Wilcoxon or Kruskal-Wallis
tests (Fig. 3A, Appendix Fig. A2A), the distribution of P-
values and the AUC of the CDF was similar to the distribu-
tion of P-values and AUC of the CDF from the parametric
tests (Fig. 1). In the analyses of P-values from both the
www.manaraa.com
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Fig. 2. Effect of randomization method on baseline P-value distribution. Distribution of 319 P-values for all 30 variables from all 13 randomized
controlled trials in 100 simulated randomizations using eight different methods. Panel A simple randomization. Panel B one block per treatment
group. Panel C permuted randomization using fixed blocks (4 for 2-arm or 4-arm trials, 3 for 3-arm trials). Panel D variable blocks between 4 and
20 for 2-arm or 4-arm trials and 3 and 18 for 3-arm trials. Panel E stratified by median age, weight, and lumbar spine bone density with one group
per stratum. Panel F stratified with fixed block sizes of 4 or 3. Panel G minimization algorithm for age, weight, and lumbar spine bone density.
Panel H weighted minimization (20% chance of simple randomization, 80% chance of minimization algorithm). The dotted line is the expected
uniform proportion of 0.10. D AUC (uniform) is the difference in area under the curve (AUC) of the cumulative distribution function (CDF) from the
AUC of the uniform distribution CDF.
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Fig. 3. Effect of normality of distribution on baseline P-value distribution. Panel A shows the 319 P-values by decile for all 30 variables from all 13
randomized controlled trials (RCTs) using nonparametric tests. Panel B, 100 simulations of normally distributed variables based on the mean and
standard deviation from each of the 13 RCTs for all 319 baseline variables. Panels C and D, results from baseline variables from the 13 RCTs
(Fig. 1) with P ! 0.05 (Panel C, n 5 212) or with P ! 0.001 (Panel D, n 5 135) from the Shapiro-Wilk test. The dotted line is the expected
uniform proportion of 0.10. D AUC (uniform) is the difference in area under the curve (AUC) of the cumulative distribution function (CDF) from
the AUC of the uniform distribution CDF, with the confidence intervals (CI) determined from the AUCs of the CDFs from a data set of 100 reran-
domizations using the original trial randomization method (Fig. 1) in Panels A, C, and D, and from the raw data in Panel B.
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parametric and nonparametric tests, there appeared to be a
smaller-than-expected proportion of P-values in the lowest
(!0.10) decile (95% confidence interval 0.039e0.093 for
parametric P-values, 0.034e0.086 for nonparametric P-
values). We then generated a data set of 100 simulations
of normally distributed variables (the ‘‘simulated normal
data set’’) based on the means and standard deviations for
each variable from each RCT. Fig. 3B and Appendix
Fig. A2B show that the distribution of P-values from the
comparison of baseline variables and the AUC-CDF in
the simulated normal data set is consistent with the uniform
distribution.

Next, we restricted the analyses from both the pooled
data set of RCTs to the non-normally distributed variables
with P ! 0.05 or P ! 0.001 from the Shapiro-Wilk test of
normality. Figures 3CeD and Appendix Figures A2CeD
show that the distribution of P-values and AUC-CDFs in
these restricted analyses is similar to the results for all
319 baseline variables.
3.3. Effect of correlation of baseline variables

We determined the correlation between baseline vari-
ables in each individual RCT. Of the 3,813 pairwise
correlations in the individual RCTs, Fig. 4 shows that in
49% the correlation statistic was between �0.1 and 0.1;
in 77% the correlation was between �0.2 and 0.2; and that
the distribution was skewed with a higher proportion of cor-
relation statistics O0.2 (16%) than ! �0.2 (7%). In the
simulated normal data set, Fig. 4 shows that there were
fewer moderately or highly correlated variables, the distri-
bution of the correlations was symmetrical, in 66% the cor-
relation statistic was between �0.1 and 0.1, and in 90% the
correlation was between �0.2 and 0.2.

Figures 1 and 3B show that the distribution of P-values
from the comparison of baseline variables is approximately
uniform, both in the simulated normal data set with few
moderate or strongly correlated baseline variables and in
the RCTs which had a higher proportion of more correlated
variables.

In 100 simulations of five variables (age, height, weight,
lumbar spine bone density, and serum creatinine) based on
the mean, standard deviation, and covariance matrix of the
variable in each of the 13 RCTs, increasing correlation be-
tween variables had little effect on the distribution of base-
line P-values. Fig. 5 and Appendix Figures A3 and A4
show the distribution of correlations and AUC-CDF for
each simulated level of correlation and that, despite the
www.manaraa.com



Fig. 4. Distribution of pairwise correlations between baseline values in 13 randomized controlled trials (RCTs) and in the simulated normal data
set. The left panel shows the results from the 13 RCTs and the right panel from the simulated normal data set in which 100 normally distributed
variables were simulated for each baseline variable based on the mean and standard deviation for each variable from each RCT. The bars show the
proportion and the line the cumulative proportion.
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increases in correlation, the distribution of baseline P-
values is uniform, and the AUC of the CDF is consistent
with the uniform AUC. Appendix B shows the means, stan-
dard deviations, and correlation matrices from the 100 sim-
ulations for each increment of correlation. These analyses
were repeated using all baseline variables from each study.
As larger constants were added to each correlation, there
was an increasing number of RCTs for which valid correla-
tion matrices were unable to be produced. Appendix
Fig. A5 shows that as the proportion of moderate or highly
correlated variables increases, the distribution of P-values
again remains uniform. Appendix C shows the means, stan-
dard deviations, and correlation matrices from the 100 sim-
ulations for each increment of correlation.

To assess the impact of clustering of correlated variables
on baseline P-values, we repeated the analyses restricted to
simulations with P ! 0.10 or P O 0.90 for age from the
comparison of randomized groups in the simulated data sets
of five increasingly correlated variables. For the simula-
tions based on the actual correlation matrices of the RCTs,
the distribution of P-values for the other four variables was
approximately uniform, and the AUC of the CDF was
consistent with the uniform AUC (Fig. 6A, Appendix
Fig. A6A). However, for the simulations with P ! 0.10
for age, increasing the correlations leads to a substantial in-
crease of P-values !0.2 and a rapid increase in the differ-
ence in AUC from the uniform AUC (Figs. 6Be6D left
panel, Appendix Figs. A6BeF, left panel). For the simula-
tions with P O 0.90 for age, increasing the correlations on-
ly leads to a clear nonuniform distribution and change in
the AUC-CDF when the increased correlation was large
(Figs. 6BeD, Appendix Figs. A6BeF, right panel).

3.4. Baseline P-values calculated from rounded
summary statistics

In the data set of RCTs with 100 simulated randomiza-
tions, the distribution of baseline P-values and AUC of the
CDF of these P-values calculated from rounded summary
statistics is not consistent with the uniform distribution or
AUC, with larger than expected proportions of P-values
O0.9 and ! 0.1, and smaller-than-expected proportions
between 0.5 and 0.9 (Fig. 7A, Appendix Fig. A7). These ef-
fects were more pronounced when extreme rounding was
used (Fig. 7B) and also in RCTs with two arms compared
to those with three or four arms (Figs. 7CeF).

When rounded summary means are identical, the P-
value calculated from summary statistics is 1. This situation
explains a large proportion of the excess P-values O0.9
seen in Figures 7AeF. To determine whether simulating
P-values might produce a more uniform distribution, we
used the mean of the 1,000 P-values calculated from
1,000 simulated means and standard deviations for each
variable in each treatment group for each of the 13 RCTs.
Figures 7G and H shows that the distribution of simulated
P-values is not uniform with a smaller-than-expected pro-
portion of P-values O0.9.

We repeated all these analyses using rounded summary
statistics from the simulated normal data set. Appendix
Fig. A8 shows that the results from these analyses are very
similar to those from the analyses of the data set of RCTs
with 100 simulated randomizations.
4. Discussion

These results show that any differences in the distribu-
tion of P-values from the comparison of baseline contin-
uous variables from a group of 13 genuine RCTs from
the expected uniform distribution are small and are not sub-
stantially affected by the randomization method, the
normality of baseline variables, or the degree of correlation
between variables. Even when there is a high proportion of
non-normally distributed variables or moderate or strongly
correlated variables, the distribution of baseline P-values
remains approximately uniform, and the AUC of the CDF
remains consistent with the uniform AUC. Stratified
randomization and minimization algorithms may lead to a
smaller-than-expected proportion of P-values !0.10, but
the effect is only small. In contrast to these minor effects,
calculation of P-values from rounded summary statistics
has important effects on the distribution of baseline P-
values. When all P-values are calculated in this way, the
distribution of baseline P-values is no longer uniform, with
www.manaraa.com



Fig. 5. The effect of increasing correlation of baseline variables on the distribution of P-values. The left panels show the distribution of P-values by
decile and the right panels the distribution of correlation statistics in 100 simulations of five variables (age, height, weight, lumbar spine bone
density, and serum creatinine) based on the mean, standard deviation, and covariance matrix from each randomized controlled trial. Panel A uses
the covariance matrix from each trial, whereas in Panels B-D, the pairwise correlations are increased by 0.1, 0.3, and 0.5, respectively. The bars
show the proportion, the line the cumulative proportion, and the dotted line the uniform distribution proportion of 0.10. D AUC (uniform) is the
difference in area under the curve (AUC) of the cumulative distribution function (CDF) from the AUC of the uniform distribution CDF.
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a large increase in the proportion of P-values O0.9, a small
increase in P-values !0.1, and a small decrease in P-
values between 0.5 and 0.9 compared to the uniform distri-
bution. The differences from the uniform distribution are
greater in two arm RCTs than three or four arm RCTs
and greater when rounding is extreme.
The distribution of baseline P-values from simulations
of variables with highly positively skewed lognormal distri-
butions and simulations in which all variables had fixed or
high levels of correlation was not uniform [8,9]. However,
these are simulations of extreme situations that are unlikely
to be seen in all variables across a group of properly
www.manaraa.com
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Fig. 6. The effect of clustering and increasing correlation of baseline variables on the distribution of P-values. The panels show the distribution of
P-values by decile in 100 simulations for four variables (height, weight, lumbar spine bone density, and serum creatinine) based on the mean,
standard deviation, and covariance matrix from each randomized controlled trial (RCT). The left panels are restricted to simulations with
P ! 0.10 for the between-groups comparison for age; the right panels are restricted to simulations with P O 0.90 for age. Panel A uses the covari-
ance matrix from each RCT, whereas in Panels B-D, the pairwise correlations are increased by 0.1, 0.3, and 0.5, respectively. The bars show the
proportion and the dotted line the uniform distribution proportion of 0.10. D AUC (uniform) is the difference in area under the curve (AUC) of the
cumulative distribution function (CDF) from the AUC of the uniform distribution CDF, with the confidence intervals (CI) calculated using bootstrap
resampling.
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Fig. 7. The effect of rounding on the distribution of baseline P-values calculated from summary statistics. The panels show the distribution of P-
values by decile calculated from rounded summary statistics of all 319 baseline variables in 100 simulated randomizations (with individuals ran-
domized in one block per treatment group) of 13 randomized controlled trials (RCTs). Panel A, variables rounded to a common level (Table 2);
Panel B, variables rounded to a more extreme level (Table 2); Panels C and D, common (C) or extreme (D) rounding in two arm RCTs; Panels E
and F, common (E) or extreme rounding (F) in three or four arm RCTs; Panels G and H simulated P-values from common (G) or extreme (H)
roundingdsee text for description. The dotted line is the uniform distribution proportion of 0.10. D AUC (uniform) is the difference in area under
the curve (AUC) of the cumulative distribution function (CDF) from the AUC of the uniform distribution CDF.
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conducted RCTs. Carlisle reported that non-normal distri-
bution had little effect on an analysis of baseline P-values,
whereas highly correlated variables could potentially alter
the results but was unlikely to explain the results obtained
from analysis of fraudulent data [26]. Taken together with
the results of our previous work [6], the current analyses
show that the distribution of continuous baseline P-values
in a group of RCTs is approximately uniform and not
significantly affected by the presence of non-normally
distributed variables or highly correlated variables that
occur in real-life RCTs. Stratified randomization and mini-
mization algorithms may lead to a smaller-than-expected
proportion of P-values !0.10, but other randomization
methods produce uniform baseline P-values. Therefore, it
seems reasonable to conclude that any differences in the
distribution of P-values from comparison of baseline
continuous variables in a group of valid RCTs from the uni-
form distribution should only be small. One contributing
factor to this conclusion regarding correlated variables
might be that the restrictive inclusion criteria generally
used in RCTs may produce narrower distributions of vari-
ables, which in turn would mean highly correlated variables
could be uncommon.

If there is a consistently large or small between-groups
difference in a baseline variable in a series of RCTs, the
distribution of P-values no longer remains uniform in high-
ly correlated data sets (Fig. 6). However, this situation is
unlikely to occur in practice in independent RCTs because
any consistent difference or similarity between variables in
independent RCTs suggests a failure of randomization, un-
less the similarity is expected as in the case of randomiza-
tion stratified by a variable or the use of a minimization
algorithm.

Reporting baseline P-values is not a recommended prac-
tice, although it is common [10]. Our results show that
when baseline P-values are calculated from rounded sum-
mary data, their distribution is no longer uniform. The most
prominent difference from the uniform distribution is the
higher-than-expected proportion of P-values O0.9, which
is more common in two arm RCTs and when rounding is
extreme. It largely arises from the situation when the
rounded means in the randomized groups are identical,
and therefore the P-value from the between-groups compar-
ison is 1. Using simulated P-values is not able to overcome
this issue and produce a uniform distribution. Therefore,
when baseline P-values are calculated from rounded sum-
mary data, it is no longer appropriate to consider the ex-
pected distribution as uniform. Instead, the expected
distributions are shown in Fig. 7 (our RCTs) and Appendix
Figures A7 and A8 (simulated RCTs).

When the baseline P-values from RCTs in which con-
cerns about fraudulent data have been raised can only be
calculated from reported rounded summary statistics, it is
still possible to compare their distribution with the expected
distribution. Visually, the distribution of baseline P-values
and the AUC-CDF can be compared to the relevant panels
in Fig. 7 and Appendix Fig. A7, or with distributions empir-
ically generated from simulations using the reported data.
The distribution of baseline P-values in two summary data
sets known to contain at least some fabricated data (see our
previous paper [6]) differs markedly from the expected dis-
tributions in Fig. 7 and Appendix Fig. A7. Secondly, the
distribution of baseline P-values can be compared with a
control data set of P-values calculated using rounded sum-
mary statistics from known genuine RCTs. The distribution
of P-values obtained through bootstrap resampling can then
be repeatedly compared in the two data sets using a two
sample KolmogoroveSmirnov test [3,6].

In summary, randomization methods, non-normality, and
correlation of baseline variables do not have important
effects on the distribution of baseline P-values or the
AUC-CDF from groups of RCTs, although stratified
randomization and minimization might lead to smaller-
than-expected proportion of P-values !0.10. In contrast,
calculation of P-values from rounded summary statistics
produces a nonuniform distribution of P-values. Neverthe-
less, the observed distribution can still be compared to the
expected distribution of baseline P-values. Therefore, as-
sessing the distribution of P-values from the comparison
of baseline variables in a group of RCTs about which con-
cerns have been raised can be helpful in identifying highly
unusual distributions that might support concerns about
data integrity and lead to further investigations. The limita-
tions have been discussed previously [6], but in general, the
technique seems most appropriate to analyze at least a
moderate number of baseline continuous variables from a
body of RCTs. Although the results should be interpreted
cautiously, large differences between observed and ex-
pected distributions of baseline P-values justify further
investigation.
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